
Declaring Local-Search
Neighbourhoods in MiniZinc

Gustav Björdal1

Pierre Flener,1 Justin Pearson,1 Peter J. Stuckey,2 and Guido Tack3

Goal

- Extend the MiniZinc language with declarative neighbourhoods.
- Allow rapid prototyping with local search strategies.
- Recreate known local search strategies in MiniZinc.

Goal

- Extend the MiniZinc language with declarative neighbourhoods.
- Allow rapid prototyping with local search strategies.
- Recreate known local search strategies in MiniZinc.

This presentation
Some background and a short walkthrough of our new MiniZinc syntax.

MiniZinc

MiniZinc

Constraint-based declarative modelling language.

Solver and technology independent: more than 15 backends.

High-level syntax.

Free and open-source under MPL 2.0.

Annual MiniZinc Challenge.

www.minizinc.org

http://www.minizinc.org

Running Example – Steel Mill Slab Design

Given
- orders of steel, each having a size and colour,

to be cut from slabs
- available slab sizes

Running Example – Steel Mill Slab Design

Given
- orders of steel, each having a size and colour,

to be cut from slabs
- available slab sizes

Decide
- how many slabs to use
- the size of each slab
- the slab each order is placed in

Running Example – Steel Mill Slab Design

Given
- orders of steel, each having a size and colour,

to be cut from slabs
- available slab sizes

Decide
- how many slabs to use
- the size of each slab
- the slab each order is placed in

Such that
- at most two colours on each slab
- the total slack in the slabs is minimal

Running Example – Steel Mill Slab Design

Given
- orders of steel, each having a size and colour,

to be cut from slabs
- available slab sizes

Decide
- how many slabs to use
- the size of each slab
- the slab each order is placed in

Such that
- at most two colours on each slab
- the total slack in the slabs is minimal

MiniZinc Model

% Some parameters omitted
...
array [Orders] of int: size;
array [Orders] of Colors: color;
array [0..maxCapa] of 0..maxCapa: slack = ... ;
% Variables:
array [Orders] of var Slabs: placedIn;
% Constraints:
array [Slabs] of var 0..maxCapa: load;
constraint bin_packing_load(load, placedIn, size);
array [Slabs] of var 0..2: nColors;
constraint forall(s in Slabs)(nColors[s] = ...);
% Objective:
var int: objective = sum(s in Slabs)(slack[load[s]]);
solve minimize objective;

Current Landscape

MiniZinc

FlatZinc

fzn-gecode Picat-SAT

CPLEX

fzn-MIP

CbcLingelingGecode Chuffed

fzn-chuffed

OscaR.cbls

fzn-oscar-cbls

A lot of backends and
solvers omitted here

iZplus

iZplus

CP SAT MIP hybrid CBLS

Solver

Backend

MiniZinc
Framework

(Constraint-Based) Local Search

Local Search

1. Start from an initial assignment of all variables
2. While some condition holds:

a. Generate a neighbourhood of similar assignments

b. Move to a best neighbour

3. Return the best solution found

Local Search

1. Start from an initial assignment of all variables
2. While some condition holds:

a. Generate a neighbourhood of similar assignments

b. Move to a best neighbour

3. Return the best solution found

10

Local Search

1. Start from an initial assignment of all variables
2. While some condition holds:

a. Generate a neighbourhood of similar assignments
b. Move to a best neighbour

3. Return the best solution found

10

10

5

8

14

13

Local Search

1. Start from an initial assignment of all variables
2. While some condition holds:

a. Generate a neighbourhood of similar assignments

b. Move to a best neighbour

3. Return the best solution found

5

10

Local Search

1. Start from an initial assignment of all variables
2. While some condition holds:

a. Generate a neighbourhood of similar assignments
b. Move to a best neighbour

3. Return the best solution found

10

5

19

4

15

5
6

Local Search

1. Start from an initial assignment of all variables
2. While some condition holds:

a. Generate a neighbourhood of similar assignments

b. Move to a best neighbour

3. Return the best solution found

5

4

Local Search

1. Start from an initial assignment of all variables
2. While some condition holds:

a. Generate a neighbourhood of similar assignments

b. Move to a best neighbour

3. Return the best solution found

4

An initial assignment

Steel Mill Slab Design

Move an order to another slab.

Steel Mill Slab Design

Steel Mill Slab Design

Design Aspects

Initialisation and neighbourhood
- How do we initialise?
- What are the moves?

Heuristic
- How do we explore the neighbourhood?

Meta-heuristic
- How do we prevent the search from getting stuck?

Constraint-Based Local Search (CBLS)

CBLS = CP-style declarative modelling + local search

A CBLS framework has:
- a library of reusable components
- a language for writing a local search procedure

Constraint-Based Local Search (CBLS)

CBLS = CP-style declarative modelling + local search

A CBLS framework has:
- a library of reusable components
- a language for writing a local search procedure

CBLS for MiniZinc

MiniZinc is a modelling language: must use black-box local search.
Works well but can be hit and miss.

Constraint-Based Local Search (CBLS)

CBLS = CP-style declarative modelling + local search

A CBLS framework has:
- a library of reusable components
- a language for writing a local search procedure

CBLS for MiniZinc

MiniZinc is a modelling language: must use black-box local search.
Works well but can be hit and miss.

Idea
Allow modellers to define (part of) a local search strategy in MiniZinc.

Declarative Neighbourhoods
in MiniZinc

What is a Neighbourhood?

A neighbourhood is a set of moves.
For example:

{X ← v | v ∈ 1 .. 10} i.e., {X ← 1, X ← 2, … , X ← 10}

What is a Neighbourhood?

A neighbourhood is a set of moves.
For example:

{X ← v | v ∈ 1 .. 10} i.e., {X ← 1, X ← 2, … , X ← 10}

A neighbourhood is not about:
- how to explore the neighbourhood
- how to evaluate the quality of a move
- which move to select

These are heuristics.

What is a Neighbourhood?

A neighbourhood is a set of moves.
For example:

{X ← v | v ∈ 1 .. 10} i.e., {X ← 1, X ← 2, … , X ← 10}

A neighbourhood is not about:
- how to explore the neighbourhood
- how to evaluate the quality of a move
- which move to select

These are heuristics.

We provide syntax only for defining the neighbourhood, not heuristics.

Basic Syntax

Move operators
X := v
X[i] := v
X :=: Y
X[i] :=: Y[j]

Basic Syntax

Move operators
X := v
X[i] := v
X :=: Y
X[i] :=: Y[j]

Declaring a set of moves
moves(v in 1..10)(X := v)

Basic Syntax

Move operators
X := v
X[i] := v
X :=: Y
X[i] :=: Y[j]

Declaring a set of moves
moves(v in 1..10)(X := v)

Compound moves
moves(i,j in Idx)(Xs[i] := Xs[j] /\ Xs[j] := Xs[i])

Pre- and Post-Conditions

Moves can have pre- and post-conditions in the form of CSPs.

Pre-condition
moves(i in Idx, v in Dom where Xs[i] > v)(Xs[i] := v)

Pre- and Post-Conditions

Moves can have pre- and post-conditions in the form of CSPs.

Pre-condition
moves(i in Idx, v in Dom where Xs[i] > v)(Xs[i] := v)

Post-condition
moves(i in Idx, v in Dom)(

Xs[i] := v /\ ensuring(alldifferent(Xs))

Initialisation

A neighbourhood can have an initialisation post-condition that must hold
upon the initial assignment (and restarts).

Permutation neighbourhood
initially(alldifferent(Xs)) /\
moves(i, j in Idx where i < j)(Xs[i] :=: Xs[j])

Union of Neighbourhoods

The union of two neighbourhoods can be expressed.

Swaps and assigns
moves(i in Idx, v in Dom)(Xs[i] := v)
union
moves (i, j in Idx where i < j)(Xs[i] :=: Xs[j])

Example 1 – Basic Neighbourhood

moves(o in Orders, s in Slabs)(placedIn[o] := s)

An initial assignment

Example 1 – Basic Neighbourhood

moves(o in Orders, s in Slabs)(placedIn[o] := s)

Move an order to another slab.

Example 1 – Basic Neighbourhood

moves(o in Orders, s in Slabs)(placedIn[o] := s)

Example 1 – Basic Neighbourhood

moves(o in Orders, s in Slabs)(placedIn[o] := s)

Example 2 – Only Feasible Solutions

initially(forall(o in Orders)(placedIn[o] = o))
/\
moves(o in Orders, s in Slabs where size[o] + load[s] <= maxCapa)(

placedIn[o] := s /\ ensuring(nColors[s] <= maxColors))

An initial assignment

Example 2 – Only Feasible Solutions

initially(forall(o in Orders)(placedIn[o] = o))
/\
moves(o in Orders, s in Slabs where size[o] + load[s] <= maxCapa)(

placedIn[o] := s /\ ensuring(nColors[s] <= maxColors))

Example 2 – Only Feasible Solutions

initially(forall(o in Orders)(placedIn[o] = o))
/\
moves(o in Orders, s in Slabs where size[o] + load[s] <= maxCapa)(

placedIn[o] := s /\ ensuring(nColors[s] <= maxColors))

Move an order to another slab,

preserving the colour and
capacity constraints.

Example 2 – Only Feasible Solutions

initially(forall(o in Orders)(placedIn[o] = o))
/\
moves(o in Orders, s in Slabs where size[o] + load[s] <= maxCapa)(

placedIn[o] := s /\ ensuring(nColors[s] <= maxColors))

Under the Hood

Some Highlights

We extend FlatZinc with flat functions.

Initialisation done using the CP solver OscaR.cp.

Move pre- and post-conditions checked using OscaR.cbls constraint system.

Experimental Evaluation

Setup

1. Steel mill slab design is solved using CBLS in [1].
We recreated their neighbourhoods in MiniZinc.

2. We added neighbourhoods to existing MiniZinc models.

We only compare the results versus fzn-oscar-cbls (black-box).

Results Compared to Black-Box

About 20% improvement in objective value compared to black-box
neighbourhood.

Results Compared to Black-Box

About 20% improvement in objective value compared to black-box
neighbourhood.

For more complex neighbourhoods, we see overall:
- a decrease in terms of iterations per second
- a speedup in terms of time until best solution found
- an improvement in terms of quality

Results Compared to Black-Box

About 20% improvement in objective value compared to black-box
neighbourhood.

For more complex neighbourhoods, we see overall:
- a decrease in terms of iterations per second
- a speedup in terms of time until best solution found
- an improvement in terms of quality

For neighbourhoods similar to the black-box ones:
- an overall slowdown
- this is expected

Conclusion & Future Work

Conclusion & Future Work

A good starting point
- Grey-box
- Declarative neighbourhoods are expressive and powerful
- One can now experiment with neighbourhoods in MiniZinc

 More to do
- White-box
- Declarative language for expressing heuristics and meta-heuristics
- Overheads to trim

Questions?

Thank You!

